1703 内用治療薬剤¹³¹I-MIBG のがん治療効果増強法の開発

佐藤 穂波

(指導教員:川井 恵一 教授)

要旨:¹³¹I 標識 3-iodobenzylguanidine (¹³¹I-MIBG) は神経芽細胞腫に対する内用療法の 治療薬剤として臨床使用されており、腫瘍細胞内に集積して殺細胞効果を発揮する。 しかし、神経芽細胞腫には¹³¹I-MIBG が親和性を有する排泄型薬物トランスポーター の一種である multidrug resistance-associated protein (MRP) が発現していることから、 ¹³¹I-MIBG が腫瘍細胞に集積後 MRP により細胞外排泄され、その治療効果が低下して いる可能性があると考えられる。本研究では、¹³¹I-MIBGの腫瘍細胞外排泄に関与す る MRP の特異的阻害剤を併用したがん治療効果増強法の開発を目指した。¹³¹I-MIBG の細胞内への取込機序を検討した結果、organic cation transporter (OCT) が主に関与し ていた。そこで、¹³¹I-MIBG と競合せずに腫瘍細胞内に取り込まれ MRP により排泄 される薬剤の中から、生体に対して高い安全性を有する probenecid を MRP 特異的阻 害剤として選択した。ヒト由来神経芽細胞腫 SK-N-SH への細胞集積実験では、 probenecid を用いた細胞外排泄阻害により¹³¹I-MIBGの集積が増加した。更にSK-N-SH 担がんマウスを用いた体内分布実験では、¹²³I-MIBG と probenecid を同時投与した結 果、¹²³I-MIBGの腫瘍対筋肉比の増加傾向が観察され、腫瘍対血液比は有意に増加し た。以上の検討より、¹³¹I-MIBG のがん治療効果増強に効果的な腫瘍細胞への集積向 上が確認されたことから、MRP 特異的阻害剤として probenecid を併用した細胞外排 泄阻害の有用性が示された。

I. はじめに

神経芽細胞腫は、小児期に頻発する頭蓋外固形がんであり、神経芽細胞腫患者のうち、病理検 査後に高リスク群と診断された患者の生命予後は依然として不良である¹⁾。その治療法には、外 科治療、化学療法、外部放射線治療が一般的に用いられているが、高リスク患者には、¹³¹I 標識 3-iodobenzylguanidine (¹³¹I-MIBG) による内用放射線療法が利用されている¹⁾。¹³¹I-MIBG は noradrenaline の類似体であり、norepinephrine transporter (NET) を介して特異的に腫瘍細胞内に取 り込まれ貯留する²⁾。その後、¹³¹I が放出する β 線により神経芽細胞腫を殺傷させる。

腫瘍細胞には、multiple drug resistance 1 (MDR1), multidrug resistance-associated protein 1 (MRP1), MRP2, MRP3, MRP4 および breast cancer resistance protein (BCRP)等の排泄型薬物トランスポーター が一般的に発現しており、投与された治療用薬剤の腫瘍細胞内濃度が低下する場合がある³³。本 研究室において、神経芽細胞腫には¹³¹I-MIBG の親和性が高い MRP が発現しており、¹³¹I-MIBG が腫瘍細胞内に取り込まれた後、MRP により細胞外排泄され、その治療効果が低下している可能 性を見出した⁴⁾。そこで本研究では、MRP 特異的阻害剤を併用することで¹³¹I-MIBG の細胞外排 泄を阻害し、¹³¹I-MIBG の腫瘍細胞内集積を向上させるがん治療効果増強法の開発を目指した。

II. ヒト由来 SLC トランスポーター強制発現系 HEK 細胞を用いた¹³¹I-MIBG の取込機序の検討
A) 実験方法と材料

¹³¹I-MIBG の代わりに¹²³I-MIBG を用いて実験を行った。¹²³I-MIBG (111 MBq/1.5 mL) は富士フ ィルム RI ファーマより提供を受けて使用した。

HEK-Mock 細胞をコントロールとして使用し、取込型薬物トランスポータ—強制発現系にはヒ ト型 organic anion transporting polypeptide 1B1 (OATP1B1), OATP1B3, OATP2B1, organic anion transporter 2 (OAT2), organic cation transporter 1 (OCT1), OCT2, Na⁺-taurocholate cotransporting polypeptide (NTCP) をそれぞれ遺伝子操作によって高発現させた HEK 細胞を用いて、各 SLC トラ ンスポーターへの¹³¹I-MIBG の取り込みへの関与を評価した。

Mock 細胞を含めた 8 種類の細胞を 5.0×10^5 cells/well になるようにコラーゲンコート 12 ウェル プレート (Iwaki) に播種し、5%CO₂、37°Cで 24 時間培養した後に実験に用いた。培養液には 10% fatal bovine serum (FBS)、ペニシリン 5 mL を含む Dulbecco's modified eagle's medium (DMEM, Wako) を用いた。培養用の培地を除去し、インキュベーション用緩衝液である Modified hanks' balanced salt solution buffer (MHBS)を 400 µL 加えて約 10 分間プレインキュベーションした。 18.5 kBq/100 µL になるよう調整した ¹²³I-MIBG を 100 µL/well 加え、 37°Cで 5 分間インキュベーションした後培地 を除去し、Dulbecco's phosphate buffered saline (PBS(-), Sigma) で 2 回洗浄した。その後 0.1 M NaOH で細胞を溶解し、細胞内に取り込まれた放射能をオートウェルガンマカウンター (AccuFLEX 7010, Aloka) で測定した。測定結果は蛋白量 1 mg あたりに取り込まれた放射性薬剤 の濃度で表した。

B) 結果と考察

¹²³I-MIBG の HEK 細胞への集積結果を Fig.1 に示す。各 HEK 細胞における ¹²³I-MIBG の集積が HEK-Mock 細胞に対する集積と比較して向上した場合、¹²³I-MIBG の取込機序に関与するトランス ポーターであると考えられるため、NET 以外に、OAT2、OCT1 と OCT2 が ¹²³I-MIBG の取り込み に関与すると思われた。特に、集積が顕著に向上した OCT が強く関与していると考えられた。

以上より¹³¹I-MIBG の細胞内取込機序と排泄機序を考慮し、¹³¹I-MIBG の治療効果増強法として 併用する MRP 特異的阻害剤の選択を行った。¹³¹I-MIBG の細胞内取り込みと競合することなく腫 瘍細胞内に取り込まれ、¹³¹I-MIBG の細胞外排泄を阻害する薬剤の中から、臨床でも痛風治療剤と して用いられており生体への安全性が非常に高い probenecid を選択した。

** p < 0.05 compared with HEK-Mock

III. ヒト由来神経芽細胞腫 SK-N-SH を用いた細胞集積実験

A) 実験方法と材料

¹³¹I-MIBG の治療対象となるヒト由来神経芽細胞株 SK-N-SH を使用した。この細胞を 10% FBS を混合した Minimum essential media α (MEM α , Wako) で 5%CO₂、37℃で培養し、80%コンフルエ ントな状態で培地を除去した。PBS(-)で細胞表面を洗浄後、0.25%Trypsine-edta solution (トリプシ ン溶液, Sigma) で細胞を剥離し、細胞を遠沈させトリプシン溶液を除去した。12 ウェル細胞培養 用マルチプレート (Iwaki) に 2×10⁵ cells/well になるよう播種し、約 48 時間後に実験を行った。 培養用の培地を除去し、インキュベーション用緩衝液である MHBS で置換し、10 分間のプレイン キュベーションを行った。阻害剤無負荷時の実験として、細胞を播種したプレートの1 ウェルあ たりに対して、約 37 kBq の¹³¹I-MIBG を投与して 1, 3, 5, 10, 30, 60, 120 分間インキュベーション した。一方、阻害剤負荷時の実験には MRP 特異的阻害剤として probenecid (Invitrogen) ^{5.6)}を用い た。Probenecid は最終濃度が 1 mM ⁵⁾となるように¹³¹I-MIBG 溶液と MHBS を用いて調整し、阻害 剤無負荷時の実験と同様の時間でインキュベーションを行った。阻害剤の有無に関わらず、イン キュベーション後に ¹³¹I-MIBG を含んだ MHBS を除去し、氷冷した MHBS で細胞が入ったウェル を 2 回洗浄した。0.1 M NaOH で細胞を溶解させ、細胞内に取り込まれた放射能をオートウェルガ ンマカウンターで測定した。測定結果は蛋白量 1 mg あたりに取り込まれた放射性薬剤の濃度で表 した。

B) 結果と考察

¹³¹I-MIBG の集積量の経時変化を Fig.2 に示す。Probenecid 負荷時に SK-N-SH に対する¹³¹I-MIBG の集積が投与後 10 分以降に有意に増加した。MRP 特異的阻害剤 probenecid の負荷時に、¹³¹I-MIBG の腫瘍細胞内取り込みに大きな影響を及ぼさず、細胞外排泄を阻害することで腫瘍細胞内に¹³¹I-MIBG を貯留できた結果であると考えられた。

IV. 担がんマウスを用いた体内分布実験

A) 実験方法と材料

体内分布実験を行うに当たり、モデルマウスとして神経芽細胞腫 SK-N-SH 担がんマウスを作成 した。神経芽細胞腫 SK-N-SH を、III に既述した方法で培養し、80%コンフルエントな状態で培 地を除去した。トリプシン溶液で細胞を剥離し、細胞を遠沈させトリプシン溶液を除去した。そ の腫瘍細胞を無血清の MEMa とマトリゲル (Corning) ⁷⁾で 5.0×10⁶ cells/100 µL に調整し、C.B-17 SCID mouse (6 週齢, ♀) の右大腿部皮下に移植した。

移植後約5週間に、腫瘍の長径が0.5-1 cmになった担がんマウスを実験に使用した。阻害剤無 負荷時には、上記の担がんマウスに¹²³I-MIBGを1匹あたり200kBq/200µLで尾静脈より投与し た。¹²³I-MIBG (111 MBq/1.5 mL) は富士フィルム RIファーマより提供を受けて使用した。一方、 阻害剤負荷実験には MRP 特異的阻害剤として probenecid (Nacalai tesque)を50 mM に調整し、1 匹あたり50µL 尾静脈から同時投与した⁸⁾。投与後10分にヘパリン処理した注射器を用いて心臓 採血し、屠殺した。速やかに臓器を摘出し、重量を測定したのち、放射能を測定した。放射能の 測定にはオートウェルガンマカウンターを用いた。求めた放射能と測定した組織の重量から ¹²³I-MIBG の集積率を求めた。また、イメージングにおけるコントラストを比較するために求めた 集積率から腫瘍対血液比と腫瘍対筋肉比を算出した。

B) 結果と考察

Table 1 に体内分布実験で得られた各臓器に対する¹³¹I-MIBG の重量集積率の平均値を示す。また Table 2 に算出した腫瘍対血液比と腫瘍対筋肉比を示す。Probenecid 負荷時に腫瘍に対する¹³¹I-MIBG の重量集積率が増加する傾向が見られ、腫瘍対血液比は有意に増加した。また、腫瘍対筋肉比も有意差はないものの、増加する傾向が見られた。担がんマウスを用いた体内分布実験においても細胞集積実験と同様に、probenecid を用いた MRP 特異的阻害効果により、¹²³I-MIBG の細胞内滞留が確認できた。

Table 1 各臓器に対する¹³¹I-MIBG の重量集積率の平均 (%ID/g)

					,	e,	
	血液	脳	心臓	肝臓	腎臓	筋肉	腫瘍
control	$1.76 {\pm} 0.65$	0.20 ± 0.08	23.14 ± 10.81	23.97 ± 4.50	8.07 ± 2.41	1.55 ± 0.65	2.06 ± 0.92
probenecid	1.82 ± 0.27	0.25 ± 0.05	28.82 ± 0.16	12.11 ± 2.08	10.52 ± 1.31	1.92 ± 0.08	2.91 ± 0.40

Table 2 腫瘍対血液比と腫瘍対筋肉比

	control	probenecid	р		
腫瘍対血液比	1.14 ± 0.31	11.62 ± 0.23	0.03*		
腫瘍対筋肉比	1.30 ± 0.20	1.52 ± 0.21	0.10		

*p < 0.05

V. 結語

¹³¹I-MIBG の腫瘍細胞内取り込みには NET に加え OCT1 と OCT2 が主に関与しており、腫瘍細胞外排泄には MRP が関与していることが確認された。そのため、¹³¹I-MIBG の腫瘍細胞外排泄を 阻害する MRP 特異的阻害剤には、¹³¹I-MIBG の腫瘍細胞内取り込みと競合せずに腫瘍細胞内に取 り込まれ、¹³¹I-MIBG の腫瘍細胞外排泄のみを阻害する薬剤の中から、臨床でも既に痛風治療剤と して使われており生体への安全性も非常に高い probenecid を選択した。細胞集積実験と担がんマ ウス体内分布実験において、¹³¹I-MIBG のがん治療効果増強に効果的な腫瘍細胞への集積向上が確 認されたため、MRP 特異的阻害剤として probenecid を併用した細胞外排泄阻害の有用性が示唆さ れた。

VI. 謝辞

本研究を終えるにあたりご指導くださいました川井 恵一 教授、金沢大学医薬保健研究域附属 健康増進科学センターの小林 正和 助教、ご協力いただきました大学院博士前期課程2年の井原 正明さんをはじめ本研究室の方々に心より御礼申し上げます。

VII. 参考文献

- 1) Kayano D, Kinuya S. Iodine-131 metaiodobenzylguanidine therapy for neuroblastoma: Reports so far and future perspective. *Sci. World J.* 2015; 2015: 189135.
- Sano Y, Okuyama C, Iehara T, Matsushima S, Yamada K, Hosoi H, Nishimura T. New semi-quantitative ¹²³I-MIBG estimation method compared with scoring system in follow-up of advanced neuroblastoma: utility of total MIBG retention ratio versus scoring method. *Ann Nucl Med.* 2012; 26(6): 462-470.
- 3) Nakanishi T. Drug transporters as targets for cancer chemotherapy. *Cancer Genomics Proteomics*. 2007; 4(3): 241-254.
- 4) 辻内 孝文. ヒト由来癌細胞における診断・治療用放射性医薬品の細胞外排泄機序の評価.金 沢大学大学院医薬保健学総合研究科保健学専攻博士前期課程論文. 2014 年 2 月.
- 5) Assaraf YG, Rothem L, Hooijberg JH, Stark M, Ifergan I, Kathmann I, Dijkmans BA, Peters GJ, Jansen G. Loss of multidrug resistance protein 1 expression and folate efflux activity results in a highly concentrative folate transport in human leukemia cells. *J. Biol. Chem.* 2003; 278: 6680-6686.
- El-Sheikh AA, Heuvel JJ, Koenderink JB, Russel FG. Effect of hypouricaemic and hyperuricaemic drugs on the renal urate efflux transporter, multidrug resistance protein 4. *Br. J. Pharmacol.* 2008; 155: 1066-1075.
- 7) Corroyer-Dulmont A, Falzone N, Kersemans V, Thompson J, Hill M, Allen PD, Beech J, Gilchrist S, Kinchesh P, Vojnovic B, Tullis I, Gaze MN, Smart S, Vallis KA. MRI-guided radiotherapy of the SK-N-SH neuroblastoma xenograft model using a small animal radiation research platform. *Br J Radiol.* 2017; 90(1069): 20160427.
- Goldenthal EI. A compilation of LD50 values in newborn and adult animals. *Toxicol Appl Pharmacol*. 1971; 18(1): 185-207