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Abstract

We studied the positron emission tomography (PET) tracer distributions of ligands for dopammieesptors (:C]SCH23390) and P
receptors (['C]raclopride) and of the dopamine precursor analo§BHluoro-L-3,4-dihydroxyphenylalanine’§F]FDOPA) in the brain after
6-hydroxydopamine (6-OHDA) lesions of the medial forebrain bundle in rats. The number of methamphetamine-induced rotation was higher
at 14 days than at 3 days after the 6-OHDA lesions. The brains of 6-OHDA-treated rats were analyzed by tissue dissection following i.v.
bolus of each tracer at 3 days (acute stage) or 3 weeks (chronic stage) posttéiiiadlopride, but not'fC]SCH23390, showed higher
accumulation in the striatum on the lesion side than on the non-lesion (intact) side both at 3 days and 3 weeks postlesion. On the other han
lower accumulation of'fFJFDOPA was observed in the striatum on the lesion side at 3 days postlesion and in both the striatum and cerebral
cortex on the lesion side at 3 weeks postlesion. Our studies demonstrate that an incré@esitidpride and a decrease H{F]JFDOPA
uptake in the denervated striatum is evident even at 3 days after the 6-OHDA lesions when the methamphetamine-induced rotational behavi
is not established.
© 2005 Elsevier Ireland Ltd. All rights reserved.
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Rats with unilateral 6-hydroxydopamine (6-OHDA) lesions neglect as well as postural and motor asymmetry, which are
of the medial forebrain bundle (MFB), through which the characterized by spontaneous and drug-induced rotation of
nigrostriatal pathway and mesocorticolimbic pathway project the anima[29]. The 6-OHDA rat has been widely used as an
from the ventral midbraif21], develop contralateral sensory animal model of Parkinson’s disease, the clinical features of
which are dominated by bradykinesia, rigidity, tremors, pos-
* Corresponding author. Tel.: +81 985 85 2969; fax: +81 985 85 5475, tural instability, and dementi@0]. In this model, there is an
E-mail addressishiday@med.miyazaki-u.ac.jp (Y. Ishida). immediate and almost complete destruction of the dopamine
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neurons of the substantia nigra and ventral tegmental area[14]. For analyzing tracer distributions in the brains of the
resulting in near total depletion (2% of normal) of dopamine 6-OHDA-treated rats, 30 rats were used at 3 days and the
in the ipsilateral striatum as a result of 6-OHDA injections remaining 30 rats were used at 3 weeks 6-OHDA postlesion.
[10]. An immunohistochemical study showed that after 6- Nine rats were randomly selected from the latter group of 30
OHDA injections there is no evident damage to dopaminer- rats, and the number of rotation following methamphetamine
gic neurons and fibers in the contralateral side of the brain (3 mg/kg, i.p.) challenge was evaluated at 3 and 14 days after
[10,12] There have been several reports on the enhancedhe 6-OHDA lesion$10,12] In addition to the 60 6-OHDA-
effects of directly acting dopamine agonists, such as apo-treated rats, seven rats were used as sham-lesioned animals
morphine in rotational behavior after the unilateral 6-OHDA for the behavioral experiment. Sham lesions were created by
lesions. The rotational behavior induced by dopamine ago- injecting the same amount (4) of saline into the left MFB
nists has been attributed to postsynaptic dopamine receptoias described above.
supersensitivity in the striatum that occurs following the  [11C]SCH23390 was synthesized by!C]methylation
unilateral destruction of mesostriatal dopamine fijédg. reaction of SCH24518 in an automated synthesis appa-
Based on these observations, it is conceivable that the 6-ratus (CUPID C-100, Sumitomo Heavy Industries Co.
OHDA-lesioned rat model may be useful for evaluating brain Ltd., Tokyo, Japan), according to the method reported by
functions in Parkinson’s disease. Halldin et al. [9] with a slight modification. The radio-
6-[*8F]Fluoro4.-3,4-dihydroxyphenylalanine 16F) chemical purity of $*C]SCH23390 was >97.4%. The spe-
FDOPA) is a positron-emitting analog of the dopamine cific activity of the product was 38.5-81.4 GRagnol.
precursor.-DOPA and is one of the earliest®F]-labeled [*1C]Raclopride was synthesized bYC]methylation reac-
compounds, which is proposed as an imaging agent for exter-tion of O-desmethylraclopride in the CUPID C-100. The
nal in vivo examination of the central nervous dopaminergic radiochemical purity of {!C]raclopride was >98.4%. The
system[6]. Therefore, {¥FJFDOPA has been used as an specific activity of the product was 32.6-88.9 GRuyol.
imaging agent to investigate the activity of aromatic amino [8F]JFDOPA was synthesized in a multipurpose synthetic
acid decarboxylase in the striatum and to assess the integritysysten{18], according to the method reported by Namavari et
of the dopaminergic system in the living brain by using al.[22] with a slight modification. The radiochemical purity
positron emission tomography (PETJ]. We previously of [*8FJFDOPA was >98.5%. The specific activity of the
demonstrated upregulation of dopamingi@ceptors in the  product was 33.0-33.7 MBgmol.
striatum and decrease in FDOPA uptake in both the striatum  The regional distribution of radioactivity in the rat
and cerebral cortex at 3 weeks after the 6-OHDA lesions in brain was examined after i.v. injection df{C]SCH23390,
this model raf11]. However, little information is available  [*C]raclopride, or }8FJFDOPA at 3 days and 3 weeks 6-
with regard to changes in dopamine receptors and FDOPAOHDA postlesion. In previous studies, many investigators
uptake in the brain, particularly, during the acute stage that reported that degeneration of nigral dopaminergic neurons as
follows the 6-OHDA lesions under the same experimental well as dopamine receptor supersensitivity in the denervated
conditions. striatum was established in 3 weeks 6-OHDA postlesion
Therefore, in the present study, we studied the [19,32] One hour (for {}C]SCH23390 and!{{C]raclopride)
tracer distributions of ligands for dopamine; Peceptors or 1.5h (for [8F]FDOPA) after the i.v. injection, the rats
([*C]SCH23390) and Breceptors (Clraclopride), and  were killed by decapitation, and each side of the brain was
of [18F]FDOPA in the brain at 3 days and 3 weeks after the dissected into different brain regions (striatum, cerebral cor-
6-OHDA lesions of the MFB inrats. Furthermore, to correlate tex, cerebellum, etc.) on ice as described by Glowinski and
the degree of motor symptoms with the tracer distributions Iversen[8]. The brain samples were weighed and radioac-
at two different point of time, rotational behavior induced tivity accumulation of each tracer was determined for each
by methamphetamine challenge was sequentially evaluatedbrain region bilaterally. Radioactivity was measured using
3 and 14 days after the 6-OHDA lesions. a scintillation counter (model 5003, Packard, USA). First,
The subjects were male Wistar rats (Kiwa Laboratory results were expressed as radioactivity per unit wet tissue
Animals, Kaisou, Japan), weighing 120-130g at the begin- weight (cpm/g). Next, the biodistribution dfjC]SCH23390,
ning of the experiment. The experimental protocols used in [11C]raclopride, and'BFJFDOPA was computed as a ratio of
this study were approved by the ethics committees for ani- lesion side to intact side for each brain region of the 6-OHDA
mal experimentation at Miyazaki Medical College and Kyoto rats.
University. Sixty rats were anesthetized using pentobarbital  Two-way ANOVA with repeated measures was used to sta-
(40 mg/kg, i.p.), and unilateral lesions of the left MFB were tistically analyze the data for the methamphetamine-induced
created by injecting 12g 6-OHDA hydrobromide (Sigma, rotation. When significant differences were found between
St. Louis, MO, USA) in 4ul sterile saline containing 0.01%  groups and/or time effect®& 0.05), post-hoc comparisons
ascorbic acid. Stereotaxic coordinates for the lesions were asvere performed by the Newman—Keuls test. Data of the ratio
follows: AP 3.2 mm rostral to the interaural line, L 1.3mm of lesion side to intact side for each brain region were ana-
left of midline, and V 6.7 mm ventral to the dural surface, lyzed non-parametrically by the Wilcoxon signed rank test.
with the incisor bar set 2.4 mm below the level of the ear bars Furthermore, the Mann-Whitnéy-test was used to analyze
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£ —L6-OHDA Table 1
% B sham Biodistribution of each tracer in three brain regions of the 6-OHDA rats
g 10 Three days Three weeks
g gl * [11C]SCH23390 1= 10)
2z $ Cerebral cortex 1.080.02 1.10£0.05
° g 6. Striatum 0.9#0.03 1.16+0.04
28 Cerebellum 1.020.02 1.00+0.01
o
3 2 4 % [11C]raclopride (= 10)
T Cerebral cortex 1.0&0.05 1.11+0.06
g = 2 Striatum 1.610.09" 1.90+0.10"
e N - Cerebellum 1.0£0.05 1.0+ 0.02
(]
OAd-cmmm oM.
é [18F]FDOPA (= 10)
s Cerebral cortex 0.92.0.04 0.90£0.06
T 3 14 ‘ Striatum 0.74+0.05" 0.8140.03"
£ days postlesion Cerebellum 0.9%:-0.07 0.99+0.01

) . . Each value presents a ratio (mea.E.M.) of lesion side to intact side of
Fig. 1. The mean number ofrotations§.E.M.) perminrecorded overa60-  g4ch prain region (cpm/g) of the 6-OHDA rats (lesion side/intact side). No
min test period in response to methamphetamine (3mg/kg, i.p.) is shown for yitarence was observed between the ratio at 3 days and at 3 weeks postlesion

unilaterally 6-OHDA-lesionedr(= 9) and sham-lesioned rats%7). “ipsi for any brain region with respect to the three tracers (Mann-Whithist).
(+)” and “contra ()" refer to the direction of rotation with respect to the * P<0.05.

lesion side.*_P<0.05, compared to each corresponding value of the sham- = p < 91 vs. corresponding values of intact side (Wilcoxon signed rank
lesioned animals (ANOVA followed by Newman—Keuls testp.<0.05, tests).

compared to the value at 3 weeks after 6-OHDA lesioning for each group

(ANOVA followed by Newman-—Keuls test). No difference was observed between the ratio at 3 days

and at 3 weeks postlesion for any brain region with respect

the difference between the ratio at 3 days and 3 weeks postle+to the three tracers (Mann—Whitnejstest).
sion for each tracer and each brain regiBvalues of <0.05 This study showed that the unilateral MFB lesions
were regarded as significant. produced with 6-OHDA caused methamphetamine-induced

When compared with the sham-lesioned animals, rotation ipsilateral to the lesions both at 3 and 14 days
methamphetamine induced significant elevated number of postlesion. However, the number of rotation was lower at
rotations ipsilateral to the 6-OHDA injections at both 3 days than that at 14 days postlesion. Similar findings
3 and 14 days postlesion in the 6-OHDA rats (group were also reported by Labandeira-Garcia etfHb]. They
effect,F1,14=24.00,P <0.01; Newman—Keuls tes?,< 0.05) showed that there is a marked and progressive loss of
(Fig. 1). Furthermore, the number of methamphetamine- dopaminergic terminals for a few days after the 6-OHDA
induced rotation, in the 6-OHDA group, was significantly lesions. This loss is counteracted by factors acting at both
higher at 14 days than at 3 days after the 6-OHDA lesions presynaptic and postsynaptic levels. There is rapid develop-
(time effect, F1,14=7.94, P<0.05; Newman-Keuls test, ment of dopamine receptor supersensitivity, detected within
P<0.05) Fig. 2). 24-48h of lesions (indicated by rotational behavior and

Table 1shows the biodistribution of*fC]SCH23390, striatal Fos expression induced by apomorphine). Addition-
[*1C]raclopride, and'PFJFDOPA in the three brain regions  ally, dopamine is more easily released in the lesion side by
(cerebral cortex, striatum, and cerebellum) on the lesion sidemethamphetamine at the time of lesions; this response is pos-
of the 6-OHDA rats, which is represented as the radioactivity sibly accompanied by decreased dopamine reuptake. This
ratio in the lesion side relative to the intact side of the brain, leads to stronger dopamine stimulation of the denervated
at 3 days and 3 weeks after the 6-OHDA lesions. The biodis- striatum when methamphetamine is administered during the
tribution of ['1CJraclopride in the striatum was significantly ~ first week postlesion. These might be the possible explana-
higher (Wilcoxon signed rank ted$,<0.01) on the lesion tions for the delayed alteration of methamphetamine-induced
side than on the intact side of the 6-OHDA rats both at 3 days rotation when compared with the alteration in tracer distri-
and 3 weeks postlesion. On the other hand, the biodistributionbutions in the present study.
of [*8F]JFDOPA in the striatum was lower (Wilcoxon signed Here, the biodistribution of LC]SCH23390 did not
rank testP <0.01) on the lesion side than on the intact side change in any brain region of the 6-OHDA-treated animals
at both 3 days and 3 weeks postlesion. The biodistribution of within 3 weeks postlesion. An upregulation of dopamine D
[18F]FDOPA in the cerebral cortex was lower on the lesion receptors after the MFB lesions has been demonstrated in
side than on the intact side at 3 weeks after the 6-OHDA receptor autoradiographic stud[s23]. Furthermore, super-
lesions (Wilcoxon signed rank te$?,<0.05). None of the  sensitivity of dopamine D receptors has been reported in
three regions showed any significant difference in the biodis- the striatal tissue homogenates after the MFB lesions with
tribution of ['1C]SCH23390 between the lesion and intact 6-OHDA [3,26]. In contrast, there are other contradicting
sides of the brain at 3 days and 3 weeks after the 6-OHDA results showing no change or decrease in density of striatal
lesions. dopamine D receptors after denervation of the nigrostri-
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