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Introduction: To clarify the difference between system A and L amino acid transport imaging in PET clinical
imaging, we focused on the use of α-[N-methyl-11C]-methylaminoisobutyric acid ([11C]MeAIB), and compared
it with [S-methyl-11C]-L-methionine ([11C]MET). The aim of this study was to assess the correlation of
accumulation of these two radioactive amino acid analogs with expression of amino acid transporters and cell
proliferative activity in carcinoma cells.
Methods: Amino acid uptake inhibitor studies were performed in four human carcinoma cells (epidermal
carcinomaA431, colorectal carcinoma LS180, and lung carcinomas PC14/GL andH441/GL) using the radioisotope
analogs [3H]MET and [14C]MeAIB.MeAIBwas used to inhibit theA systemand2-amino-2-norbornane-carboxylic
acid (BCH) was used to inhibit the L system. The carcinoma gene expression levels of a number of amino acid
transporters were measured by microarray and quantitative polymerase chain reaction. Carcinoma proliferative
activity was assessed using accumulation of [methyl-3H]-3'-deoxy-3'-fluorothymidine ([3H]FLT).

Results and conclusion: [14C]MeAIB uptake occurred principally via a Na+-dependent A typemechanismwhereas
[3H]MET uptake occurred predominantly via a Na+-independent L typemechanism although other transporters
were also utilized depending on cell type. There was no correlation between [3H]MET uptake and total system L
amino acid transporter (LAT) expression. In contrast, [14C]MeAIB uptake strongly correlated with total system A
amino acid transporter (SNAT) expression and proliferative activity in this preliminary study using four human
carcinoma cell lines. Carcinoma proliferative activity also correlated with total SNAT expression.
Advances in Knowledge and Implications for Patient Care: Because there is a significant correlation between the
accumulation of [14C]MeAIB and the gene expression level of total SNAT aswell as the accumulation of [3H]FLT, it
is suggested that use of the analog [11C]MeAIB in PET may provide an indication of tumor cell proliferative
activity. [11C]MeAIB is therefore expected to be very useful in PET imaging.

© 2017 Elsevier Inc. All rights reserved.
1. Introduction

2-[18F]fluoro-2-deoxy-D-glucose ([18F]FDG), an analog of glucose, is
the most commonly used radiopharmaceutical in positron emission to-
mography (PET)-CT imaging [1]. PET-CT imaging is based on the prefer-
ential uptake of [18F]FDG in tumor cells as compared to normal cells,
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ai).
because glucose metabolism is increased in tumor cells. [18F]FDG PET-
CT has been found to be useful in lesion detection and characterization,
evaluation of tumor stage, assessment of treatment response and detec-
tion of recurrent disease [2,3]. However, the specificity of this technique
is low in patients with active infections and inflammatory diseases
(because of high FDGuptake inmacrophages) and in the brain (because
of high background FDG uptake) [4,5]. Therefore, the development of
post-FDG radiopharmaceuticals is needed.

After glucose transport, amino acid transport is another important
pathway in cellular energy metabolism. Therefore, natural or artificial
amino acid analogs have been widely studied clinically as potential
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post-FDG radiopharmaceuticals for PET imaging; one of the most
important radiolabeled amino acids in this regard is [S-methyl-11C]-L-
methionine ([11C]MET) [6,7]. Since both amino acid transport and
protein synthesis rates are enhanced in tumors, [11C]MET has been as
widely used in brain tumor imaging as O-(2-[18F]-fluoroethyl)-L-
tyrosine ([18F]FET) [8,9].

Numerous amino acid transporters have been identified at the mo-
lecular level and have been characterized in mammalian cells [10–12].
The main transport systems for the uptake of neutral amino acids are
the A, L, and alanine-serine-cysteine (ASC) amino acid transport sys-
tems. System L amino acid transporters are Na+ independent, and are
themain transportmechanism formethionine, tyrosine, phenylalanine,
and their analogs such as FAMT (3-fluoro-α-methyl-tyrosine) [13–16].
The system A and ASC amino acid transporters are Na+-dependent,
however, compared to the system L transporters, their involvement in
the transport by radiolabeled amino acids in nuclear medicine has not
been studied in detail.

The artificial amino acid radiopharmaceutical α-[N-methyl-11C]-
methylaminoisobutyric acid ([11C]MeAIB) is a promising specific sub-
strate of system A amino acid transport. Compared with [11C]MET,
[11C]MeAIB is metabolically stable [17] and it has been studied both
pre-clinically and clinically. For example, [11C]MeAIB has been shown
to be useful in the measurement of amino acid uptake into skeletal
muscle and in the diagnosis of malignant lymphoma and head and
neck cancers [18–20]. In our institute, [11C]MeAIB PET has proven useful
in the diagnosis of chest diseases, especially in the differential diagnosis
between sarcoidosis and metastasis [21].

Previous studies in carcinoma cells have shown that there is a high
correlation between both MET and FAMT uptake and the gene expres-
sion levels of system L amino acid transporters [15,16,22]. However,
the relationship between the accumulation of radiolabeled amino
acids and the gene expression levels of system A amino acid trans-
porters has not been examined.

In this study,we explored the amino acid transport systems in four dif-
ferenthumancarcinomacell lines usingα-[1-14C]-methylaminoisobutyric
acid ([14C]MeAIB) as a substrate and comparing it to [S-methyl-3H]-L-
methionine ([3H]MET) and [methyl-3H]-3'-deoxy-3'-fluorothymidine
([3H]FLT). We elected to use 14C or 3H–labeled amino acid analogs
because both [11C]MeAIB and [11C]MET have a very short half-life
(20 min). We also investigated the gene expression profiles of numerous
amino acid transporters in these four types of human carcinoma cell
lines using microarray analysis. Following on from this initial screen we
used quantitative reverse transcription polymerase chain reaction (qRT-
PCR) to characterize the expression of the mRNAs encoding SNAT1,
SNAT2, SNAT4, ASCT1, ASCT2, y+LAT1, y+LAT2, LAT1, LAT2, LAT3, LAT4,
and 4F2hc. We then examined the correlation between accumulation of
[3H]MET and the quantitative mRNA expression of total system L trans-
porter (total LAT = LAT1 + LAT2 + LAT3 + LAT4) and total system A
amino acid transporters (total SNAT = SNAT1 + SNAT2 + SNAT4) in
these human carcinoma cell lines. Finally, we examined the correlation
between accumulation of [3H]FLT uptake and [14C]MeAIB uptake as well
as the correlation between [3H]FLT uptake and the quantitative gene ex-
pression of total SNAT transporters.

2. Materials and methods

2.1. Radiolabeled amino acid analogs and amino acid transport inhibitors

Because of the short half-life of 11C (20 min), radiolabeled amino
acid analogswithmuch longer half-liveswere used instead. 14C–labeled
MeAIB ([14C]MeAIB, 37 kBq/ml), 3H–labeled MET ([3H]MET, 18.5 kBq/
ml) and 3H–labeled FLT ([3H]FLT, 18.5 kBq/ml) were obtained from
American Radiolabeled Chemicals Inc. (St Louis, Missouri, USA). MeAIB
(α-methylaminoisobutyric acid), a specific inhibitor of system A, and
BCH (2-amino-2-norbornane-carboxylic acid), a specific inhibitor of
system L, were acquired from Sigma-Aldrich Japan KK (Tokyo, Japan).
2.2. Cell culture

Cell line studies were performed using a modification of the
methods described by Shikano et al. and Nakajima et al. [23,24], as fol-
lows. A431 and LS180 cell lines were purchased from Dainippon
Sumitomo Pharma Co., Ltd. (Osaka, Japan). The cultured human tumor
cell lines H441 and PC14 were obtained from the University of Texas,
MD Anderson Cancer Center, Houston, TX, USA. All cells were cultured
in 150 mm cell culture dishes (Becton Dickinson, New Jersey, USA)in a
5% CO2 humidified atmosphere at 37 °C with specific media as follows;
A431 cells were maintained in Dulbecco's modified Eagle”'s medium
(DMEM; Sigma-Aldrich, Japan) containing high glucose supplemented
with 10% fetal bovine serum (FBS) and 3.7 g/L NaHCO3, H441 cells
were maintained in RPMI-1640medium (Sigma-Aldrich, Japan) sup-
plemented with 10% FBS, 1% sodium pyruvate (Sigma-Aldrich,
Japan) and 2.0 g/L NaHCO3, PC14 cells were maintained in DMEM/
Nutrient Mixture F-12 Ham (DMEM/F12; Sigma-Aldrich, Japan) sup-
plemented with 10% FBS and 1.2 g/L NaHCO3, and LS180 cells were
maintained in minimum essential medium Eagle (MEM; Sigma-
Aldrich, Japan) supplemented with 10% FBS, 1% sodium pyruvate
and 2.2 g/L NaHCO3. Sub-culturing was performed every five days
using 0.02% EDTA and 0.05% trypsin. For amino acid uptake experi-
ments, cells were seeded into a 24-well Multiwell Plate (Becton
Dickinson, New Jersey, USA) at a density of 5 × 105 cells/well and
were used 24 h after plating.
2.3. Measurement of [14C]MeAIB, [3H]MET and [3H]FLT transport in
human carcinoma cells

For transport studies in a sodium-containing medium, phosphate-
buffered saline (PBS) pH 7.4 (137 mM NaCl, 3 mM KCl, 8 mM
Na2HPO4, 1.5 mM K2HPO4, 1 mM CaCl2 and 0.5 mM MgCl2) was used.
For sodium-free transport studies, the NaCl and Na2HPO4 in PBS were
replaced with the same concentrations of choline-Cl and K2HPO4, re-
spectively. After removal of the culture medium, the 24-well Multiwell
Plate was washed once with 5 mL of incubation medium for 10 min at
37 °C. The cells were then incubatedwith 500 μL/well of incubationme-
dium containing [14C]MeAIB (37 kBq/mL) and [3H]MET (18.5 kBq/mL)
or [3H]FLT (18.5 kBq/mL) for 10min at 37 °C. For the experiment involv-
ing amino acid transport, inhibitors were added to a final concentra-
tion of 1 mM, and the cells were then incubated for 10 min at 37 °C
with [14C]MeAIB (37 kBq/mL) and [3H]MET (18.5 kBq/mL) or [3H]
FLT (18.5 kBq/mL). After incubation with the radiolabeled amino
acid analog, the medium was aspirated and the monolayers were
rapidly rinsed twice with 500 μL of ice-cold incubation medium.
Cells were solubilized in 500 μL of 0.1 N NaOH, and the radioactivity
(either 3H and 14C) of an aliquot (400 μL) was measured by addition
of Clear-Sol II (Nacalai Tesque Inc., Kyoto, Japan) and scintillation
counting using an LSC-5100 liquid scintillation counter (Hitachi
Aloka Medical, Ltd., Tokyo, Japan).

To characterize relative contributions of each type of transport
system to overall amino acid analog uptake, we performed inhibition
experiments with inhibitors as described above. BCHwas used as a sys-
tem L inhibitor andMeAIBwas used as a systemA inhibitor. To calculate
the relative contributions of amino acid transporter systems, we used
the methods reported by Shikano et al. [23] and Nakajima et al. [24].
In brief, uptake of [3H]MET and [14C]MeAIB in the absence of inhibitors
was used as the control (100%). System A uptake was calculated as
[control uptake in Na+-PBS] – [uptake in the presence of MeAIB in
Na+-PBS]. Uptake by system ASC and/or other systems (for example
IMINO, B0, G-like, N, and y+L which cannot be individually assessed
yet) was calculated as [uptake in the presence of MeAIB in Na+-PBS]
– [control uptake in Na+ free-PBS]. System L uptake was calculated
as [control uptake in Na+ free-PBS] – [uptake in the presence of
BCH in Na+ free-PBS].
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2.4. DNA microarray and quantitative real-time PCR

DNA microarray and quantitative real-time PCR were performed
using the method s of Okudaira et al. [25] and Yoshimoto et al. [26]
The quality of RNA preparations was assessed using RIN (RNA Integrity
Number) software tool on an Agilent 2100 BioAnalyzer (Agilent Tech-
nologies, Santa Clara, CA, USA). The expression levels of neutral amino
acid transporters in the four types of human carcinoma cells were ana-
lyzed using a DNA microarray (Agilent Technologies). The values are
expressed as relative quantities to a universal reference RNA (Strata-
gene Products Division, Agilent Technologies).

mRNA levels of neutral amino acid transporters were determined by
conducting qRT-PCR assays. Amplification and real-time fluorescence
detection were performed using a model Mx3005P Real Time QPCR
system (Stratagene Products Division, Agilent Technologies). All data
were normalized using the geometric mean of β-actin and GAPDH. All
reactions were performed in triplicate.

3. Results

3.1. Uptake of [14C]MeAIB, [3H]MET and [3H]FLT transport in human
carcinoma cells

As shown in Fig. 1 for all four carcinoma cell lines the uptake of [3H]
MET under control conditions (Na+-PBS) was found to be about 3–5
times higher than the uptake of either [14C]MeAIB. The uptake of [14C]
MeAIB relative to [3H]FLT varied between the different cell lines with
[3H]FLT showing greater uptake than [14C]MeAIB in A431 and PC14
cells and [14C]MeAIB showing greater uptake than [3H]FLT in H441
and LS180 cells.

3.2. Competitive inhibition studies using [3H]MET and [14C]MeAIB

The majority of [3H]MET transport appeared to occur in a Na+-
independent manner in all four carcinoma cell lines (Fig. 2). The inhib-
itor BCH caused a large significant inhibition of this Na+-independent
transport indicating the importance of system L. Although, the system
A inhibitor MeAIB showed significant inhibition of Na+-dependent
transport in H441, PC14, and LS180 cells, the absolute magnitude of in-
hibitionwas very small relative to themagnitude of inhibition seenwith
BCH. The contribution of system A toMET uptake is therefore small rel-
ative to the contribution of system L. By comparing the uptake inMeAIB
treated cells in the presence of Na+ with uptake in control medium
lacking Na+ the relative contribution of system ASC and/or other sys-
tems to MET uptake can be calculated. The ASC system was found to
have a significant contribution to MET transport in PC14 and LS180
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Fig. 1. Uptake of [14C]MeAIB, [3H]MET, and [3H]FLT by four human carcinoma cell lines.
Uptake of radiolabeled amino acid analogs in the presence of Na+ was measured 10 min
after addition to four different carcinoma cell lines. Data are expressed as %ID/105 cells.
Error bars represent S.D. (n = 4). ID injected dose.
cells but not in A431 or H441 cells, although as for systemA, the relative
magnitude was less than system L.

In contrast, in all four carcinomas, themajority of [14C]MeAIB uptake
was Na+ dependent (Fig. 3) and as expected there was a large and sig-
nificant inhibition of this Na+ dependent uptake of [14C]MeAIB by
MeAIB indicating the importance of system A. The system L inhibitor
had either no or minimal effect on the remaining Na+-independent
transport.

3.3. Relative contribution of amino acid transport systems for MET and
MeAIB in human carcinomas

The relative contributions of amino acid transport systems A, L, and,
ASC/other to the uptake of [3H]MET and [14C]MeAIB in the four types of
human carcinomas were estimated using the modified methods of
Shikano et al. [23] and Nakajima et al. [24] and the results are shown
in Table 1. Although the dominant uptake mechanism for [3H]MET in
human carcinomas was through system L amino acid transport, system
A, ASC, or other Na+-dependent system(s) also played a role. The
dominant uptake mechanism of [14C]MeAIB in human carcinomas was
Na+-dependent and occurred via system A.

3.4. Correlation between [3H]MET and [14C]MeAIB uptake and transporter
gene expression or [3H]FLT in human-derived tumor cells

With regard to the contribution of system L amino acid transport
to the Na+-dependent uptake of [3H]MET the A431 and H441 cells
had the highest system L contribution (76.3%and 48.9% respectively)
(Table 1). When the expression of numerous sodium-dependent and
-independent amino acid transporters were analyzed using microarray
gene expression profiling, as well as by qRT-PCR, the expression of the
system L transporter LAT1 and the coupling factor 4F2hc were found
to be abundantly expressed in both A431 and H441 cells compared to
the PC14 and LS180 cells (Tables 2 and Table 3). Based on the results
of the qRT-PCR analysis, the expression of LAT1 varied across the four
different carcinoma cell lines (Table 3). When the [3H]MET uptake in
the presence of Na+ for all four carcinomas was plotted against total
LAT (system L) expression no correlation was found (Fig. 4A). On the
other hand, there was a significant correlation between accumulation
of [14C]MeAIB and total SNAT (system A) gene expression in the carci-
noma cells (Fig. 4B). Moreover, there are significant correlations be-
tween accumulation of [3H]FLT and accumulation of [14C]MeAIB as
well as between [3H]FLT accumulation and gene expression level of
the system A amino acid transporter SNAT in the carcinoma cells
(Fig. 5C and D). For [3H]MET, the R2 value between accumulation of
[3H]FLT and accumulation of [3H]MET was lower compared with [14C]
MeAIB (Fig. 5A and C). There was no correlation between accumulation
of [3H]FLT and gene expression of the total system L amino acid trans-
porter (LAT) expression (Fig. 5B).

3.5. Statistical analysis

Data are presented as means and ± SDs. P values were calculated
using a two-tailed paired Student t test for comparison between two
groups. A P value less than 0.05 was considered significant.

4. Discussion

The amino acid analog MeAIB is an inhibitor and specific substrate
for system A amino acid transport and the main transport mechanism
for MeAIB uptake is thought to occur via system A [27–32]. A study in
Chinese hamster ovary (CHO) cells showed that more than 90% of
MeAIB transport occurred through system A [9,33]. A study in cultured
human erythroleukemic (K562) cells using radiolabeled [14C]MeAIB
also gave the same result [34]. Given all of data, it is thought that system
A is the principal [11C]MeAIB transport pathway in in vivo human PET
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studies [19,20], although no human PET study has been conducted in
the presence of amino acid transport inhibitors. In our study using
four different types of human carcinoma cells we have shown that
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Table 1
Relative functional contributions of different amino acid transport systems in four human
carcinoma cells.

Cells System A System ASC and/or others System L

[3H]MET A431 – – 76.3%
H441 15.8% – 48.9%
PC14 15.0% 21.2% 38.5%
LS180 13.7% 13.7% 38.5%

[14C]MeAIB A431 76.8% 7.1% 3.6%
H441 76.1% 9.8% –
PC14 71.5% 14.4% –
LS180 73.9% 10.5% –

Percentage of control.

Table 3
Absolute quantification of sodium-dependent and -independent amino acid.

System Transporter A431 H441 PC14 LS180

Sodium dependent A SNAT1 1.341 0.917 0.767 0.915
SNAT2 0.407 0.306 0.814 0.203
SNAT4 0.001 0 0 0.004

ASC ASCT1 0.110 0.236 0.034 0.083
ASCT2 1.452 0.659 0.300 0.893

y+L y+LAT1 0 0 0.066 0.084
y+LAT2 0.038 0.016 0.055 0.119

Sodium independent L LAT1 2.384 5.688 0.064 0.768
LAT2 0.040 0.179 – 0.111
LAT3 0 0.006 0.007 0.051
LAT4 0.005 0.008 0.002 0.037

System L cofactor 4F2hc 4F2hc 4.337 10.085 0.508 2.171

Copy/10 copies of housekeeping gene.
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systemASC and the relative contributions of all systems varied between
the different cell lines (Table 1). Stability studies have shown that more
than 95% of [11C]MeAIB remained unchanged in human plasma 30 min
after administration. Since it is an unnatural amino acid, it also cannot
be used for protein synthesis [17]. Therefore, [11C]MeAIB imaging may
more accurately represent the uptake of amino acid transporter system
A compared to [11C]MET. Since [11C]MeAIB has higher selectivity for
system A compared to [11C]-2-aminoisobutyric acid ([11C]AIB, another
system A substrate) [27,31], [11C]MeAIB is expected to be very useful
in system A amino acid transport PET imaging. We have previously re-
ported the utility of [11C]MeAIB in the diagnosis of chest diseases, espe-
cially in the differential diagnosis between sarcoidosis and metastasis
[21]. [11C]MeAIB has comparable sensitivity to [18F]FDG PET for the di-
agnosis of prostate cancer [35] and the tumor/non-tumor ratio obtained
with [11C]MeAIB precisely distinguishes the malignant group from the
benign group in patients with brain tumors [36].
Table 2
Microarray gene expression profiling of sodium-dependent and -independent amino acid
transporters in four human carcinoma cell lines.

System Transporter A431 H441 PC14 LS180

Sodium
dependent

A SNAT1 1.233 0.938 0.687 0.383
1.148 1.128 0.553 1.022

SNAT2 0.448 0.319 0.835 0.190
1.022 0.654 1.740 0.382

SNAT4 0.148 0.298 0.143 0.491
0.286 0.587 0.268 0.389

SNAT6 3.860 1.407 2.324 0.252
GLY GlyT1 5.004 4.089 1.305 0.938

GlyT2 0.575 0.693 0.836 0.470
ASC ASCT1 1.355 3.487 0.432 1.036

0.644 1.360 0.174 0.395
ASCT2 3.536 1.860 0.896 2.097

N SNAT3 0.285 0.100 0.254 0.249
SNAT5 10.941 5.275 0.019 0.037

β Taut 0.348 0.157 0.829 0.398
1.102 0.723 2.296 2.622

B0 B0AT 0.047 0.023 0.023 1.302
0.080 0.164 0.074 0.850

y+L y+LAT1 0.167 0.184 36.885 46.218
y+LAT2 1.882 0.572 2.559 3.589

0.618 1.012 1.235 0.694
0.942 0.931 1.381 1.220

Sodium
independent

L LAT1 2.700 7.329 0.244 1.197
4.981 11.428 0.166 1.693

LAT2 0.540 2.500 0.014 1.309
LAT3 0.193 0.669 0.753 5.427
LAT4 0.106 0.182 0.057 0.569

T TAT1 0.116 3.366 0.332 0.159
B0 BAT1 0.166 0.337 0.156 0.227
asc asc1 0.065 0.134 0.059 0.086

Coupling factor L, y+L, asc,
X-C

4F2hc 4.682 9.485 0.637 1.946
4.646 9.681 0.560 1.939
On the other hand, the main transport mechanism of [3H]MET in
tumor cells has been reported to be system L [21,35], which is consistent
with our study results. The radiolabeled amino acid [11C]MET has the
[11C] group incorporated into the methyl group attached to the sulfur.
[11C]MET is used at a lower rate in protein synthesis compared with
other [11C] labeled amino acids such as [1-11C]-L-methionine which
has the label in the carboxyl terminal. Therefore, [11C]MET tumor up-
take represents a combination of amino acid transport and intracellular
metabolism [37]. However, since radiosynthesis of [11C]MET is extreme-
ly simple and easy, in clinical practice, [11C]MET-PET, togetherwith [18F]
FET, has been widely used in brain tumor imaging [8,9].

We investigated the correlation between accumulation of [3H]MET
and [14C]MeAIB in four types of human carcinoma cells and gene ex-
pression, which led to the conclusion that there was no correlation be-
tween [3H]MET uptake and LAT expression (Fig. 4A). A weak
relationship between [3H]MET uptake and total LAT expression has pre-
viously been reported [22,26]. The reasons for this lack of correlation are
not completely clear but could perhaps be related to the fact that LAT1
biology is complex and involves a number of other proteins. One such
protein is the amino acid transporter activating factor 4F2hc with
which LAT1 forms disulfide-linked heterodimers thereby becoming ac-
tive. A second protein is ASCT2. LAT1 transports neutral amino acidwith
long side chains, such as leucine, and simultaneously counter transports
intracellular glutamine [38,39]. The intracellular glutamine supply is
maintained via the intracellular Na+-dependent amino acid transporter
ASCT2 that helps facilitate LAT1 function. The interplay between LAT1,
ASCT2, and 4F2hc is thought to be important in controlling cancer cell
metabolism [40]. For example, co-expression of LAT1 with ASCT2 has
been shown in lung cancer, and this co-expression, but not the sole ex-
pression of LAT1 or ASCT2, is strongly related to prognosis [41].

In our study, [14C]MeAIB accumulation in four types of human carci-
noma cells was correlated with total SNAT expression (Fig. 4B). Since
SNAT does not require an activating factor, there is a high possibility
of a consistent relationship between SNAT expression and cellular up-
take. System L, which transports amino acids into cells, has a counter
transport mechanism associated with it. In contrast, system A, which
also transports amino acids into cells, has no counter transport activity.
Amino acid transporter function can therefore be evaluated directly
usingMeAIB (systemA substrate), allowing differentiation from system
L [42,43]. The correlation between the uptake of radiotracers and the
gene expression of amino acid transporter in tumor cells has been eval-
uated in a number of recent nuclear medicine studies. A correlation be-
tween 4-borono-2-18F-fluoro-phenylalanine ([18F]FBPA) and L-3-[18F]
fluoro-α-methyl tyrosine ([18F]FAMT) uptake and LAT1 expression
[15,16,26], a correlation between [S-methyl-3H]-D-MET uptake and
LAT + ASCT expression [22], and a correlation between Trans-1-
amino-3-[18F]fluorocyclobutanecarboxylic acid ([18F]FACBC) uptake
and ASCT expression [25,44] have all been recently reported. However,
it should be borne in mind that gene expression levels may not directly
correlate with protein levels. In addition, cell-surface localization and
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activity of amino acid transporter proteins may not necessarily be pre-
dicted by gene expression levels.

Our data also showed that [3H]FLT accumulationwas strongly corre-
lated with SNAT expression and [14C]MeAIB accumulation (Fig. 5C and
D). Uptake of 3′-deoxy-3′-[18F]fluorothymidine ([18F]FLT), followed by
phosphorylation by Thymidine Kinase 1 (TK1) leads to accumulation
of the phosphorylated form of [18F]FLT in cells. The TK1 activity of
cells has been reported to be related to cellular proliferative activity,
which can be easily evaluated based on [18F]FLT accumulation
[45–47]. Based on these data, since [3H]FLT accumulation is correlated
with [14C]MeAIB accumulation, it is reasonable to conclude that [11C]
MeAIB accumulation is correlated not only with SNAT expression but
also with cellular proliferative activity. For [3H]MET, the R2 value be-
tween accumulation of [3H]FLT and accumulation of [3H]MET was
lower comparison with [14C]MeAIB (Fig. 5A and C). From the perspec-
tive of statistics, the correlation of [3H]FLT uptake needs to be examined
with either [3H]MET uptake or [14C]MeAIB uptake in many human car-
cinoma cells. Studies using Ki-67 in many human carcinoma cells are
underway to confirm the uptake results observed correlating [14C]
MeAIB and [3H]MET to [3H]FLT uptake.

Glucose metabolism, as well as amino acid metabolism, increases as
a requirement to supply an energy source for cell proliferation in cancer
cells [48]. Moreover, amino acids and amino acid transporters play im-
portant roles other than in energy metabolism, such as in macromolec-
ular synthesis, mTOR activation, and ROS homeostasis beyond energy
metabolism [49]. There are approximately fifty different types of
amino acid transporters, but only LAT1 [50], LAT3 [51], ASCT2 [52],
ATB0, +[53] and xCT [54] have been reported to be expressed at high
levels on the surface of cancer cells. Recently, there have been numerous
reports in cancer cells related to glutamine transport via ASCT2 and
LAT1 [55–57]. Moreover, the expression levels of the SNAT amino acid
transporter, which belongs to the SLC38 family and like ASCT2 and
LAT1 is related to glutamine transport, have been examined in a range
of different cancers. Overexpression of SNAT was observed in gastric
cancer [58], human hepatocellular carcinoma [59], breast cancer
[60,61], hilar cholangiocarcinoma [62], C6 glioma [63], prostate cancer
[25], HeLa epithelial cervical cancer cells, and 143B osteosarcoma cells
[64]; and SNAT expression in stomach and breast cancers is also related
to Ki-67 [61] and PCNA (proliferating cell nuclear antigen) expression
[58] as indicated by proliferative activity.

Reportedly, the accumulation of [11C]AIB, an unnatural amino acid
and amino acid transporter system A substrate, accumulation in cancer
cells post-radiation therapy is correlated with changes in SLC38A1 ex-
pression [65]. Data from the Oncomine analysis (a gene expression da-
tabase of 947 human cancer cell lines, http://www.broadinstitute.org/
ccle) revealed that ASCT2, SNAT1 and SNAT2 were overexpressed,
which could lead to a new treatment for preventing proliferation of can-
cer cells [64]. The studies reported here highlight the potential impor-
tance of SNAT in cancer. As described earlier, there have been an
increasing number of studies highlighting the role of SNAT in cancer
cells. Since [11C]MeAIB accumulation is correlated with SNAT expres-
sion and SNAT expression is correlated with [18F]FLT accumulation in
cancer cells, this suggests that there is a relationship with tumor prolif-
erative activity.

Our results along with previous investigations support the con-
cept that SNAT mediates the uptake of [11C]MeAIB by tumor cells.
We expect that accurate PCR studies examining the relationship be-
tween amino acid transporter gene expression and amino acid trans-
porter activity in human carcinoma cells will be performed in the
future.
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