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Introduction: 4-Borono-2-18 F-fluoro-phenylalanine (18 F-FBPA) has been used to anticipate the therapeutic
effects of boron neutron capture therapy (BNCT) with 4-borono-L-phenylalanine (BPA). Similarly, L-
[methyl-11C]-methionine (11C-MET), the most popular amino acid PET tracer, is a possible candidate for this
purpose. We investigated the transport mechanism of 18 F-FBPA and compared it with that of 14C-MET in
human glioblastoma cell lines.
Methods: Uptake of 18 F-FBPA and 14C-MET was examined in A172, T98G, and U-87MG cells using 2-
aminobicyclo-(2.2.1)-heptane-2-carboxylic acid (a system L-specific substrate), 2-(methylamino)-isobutyric
acid (a system A-specific substrate), and BPA. Gene expression was analyzed by quantitative real time
polymerase chain reaction.
Results: System L was mainly involved in the uptake of 18 F-FBPA (74.5%–81.1% of total uptake) and 14C-MET

(48.3%–59.4%). System A and ASC also contributed to the uptake of 14C-MET. Inhibition experiments revealed
that BPA significantly decreased the uptake of 18 F-FBPA, whereas 31%–42% of total 14C-MET uptake was
transported by BPA non-sensitive transporters. In addition, 18 F-FBPA uptake correlated with LAT1 and total
LAT expressions.
Conclusion: This study demonstrated that 18 F-FBPA was predominantly transported by system L in human
glioblastoma cells compared to 14C-MET. Although further studies are needed to elucidate the correlation
between 18 F-FBPA uptake and BPA content in tumor tissues, 18 F-FBPA is suitable for the selection of patients
who benefit from BNCT with BPA.

© 2013 Elsevier Inc. All rights reserved.
1. Introduction

Boron neutron capture therapy (BNCT) is radiotherapy using high
linear energy transfer (LET) alpha particle (4He) and recoiling lithium
(7Li), which are produced by a nuclear fission reaction of 10B with low
energy thermal neutrons. Clinical interest in BNCT has focused
primarily on patients with high grade glioma [1–3]. The success of
BNCT requires sufficient accumulation of 10B in cancer tissues. The
representative 10B carrier used in clinical trials is 4-borono-L-
phenylalanine (BPA), and a preferable tumor to normal tissue ratio
is greater than 3–5 [4]. Therefore, estimation of 10B content in cancer
tissue helps to anticipate the therapeutic potential of BNCT.

An 18 F-labelled analog of BPA, 4-borono-2-18 F-fluoro-phenylal-
anine (18 F-FBPA) has been developed to predict 10B concentration in
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tumors [5,6]. Imahori et al. indicated that the 10B concentration and
kinetics of BPA can be estimated using the rate constants of 18 F-FBPA-
positron emission tomography (PET) [7,8]. 18 F-FBPA and BPA are
thought to be transported via system L, which recognizes neutral
amino acids with large, branched, or aromatic side chains like
phenylalanine as substrates. Thus, four isoforms of system L, LAT1,
LAT2, LAT3, and LAT4, have been identified so far [9–12]. In particular,
overexpression of LAT1 is widely found in many tumors [13,14]. Detta
et al. found that the uptake of BPA in human brain tumor samples was
inhibited by phenylalanine and 2-aminobicyclo-(2.2.1)-heptane-2-
carboxylic acid (BCH), indicating the significant involvement of
system L [15]. However, the contribution of other transporters, such
as system A and ASC, in the uptake of BPA was not investigated. Thus,
the transporter systems involved in the uptake of 18 F-FBPA in glioma
cells still remain to be determined.

18 F-FBPA is synthesized only in certain hospitals, thus, its utility
seems clinically challenging. However, L-[methyl-11C]-methionine
(11C-MET), which is the most popular amino acid PET tracer, available
in many hospitals, is also a candidate for screening of patients
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Table 1
Sequences of primers.

Official Symbol Alias Primer Sequence

SLC38A1 SNAT1 Forward attttgggactcgcctttg
Reverse agcaatgtcactgaagtcaaaagt

SLC38A2 SNAT2 Forward cctatgaaatctgtacaaaagattgg
Reverse ttgtgtacccaatccaaaacaa

SLC38A4 SNAT4 Forward tgttctggtcatccttgtgc
Reverse aaaactgctggaagaataaaaatcag

SLC1A4 ASCT1 Forward tttgcgacagcatttgctac
Reverse gcacttcatcatagagggaagg

SLC1A5 ASCT2 Forward gaggaatatcaccggaacca
Reverse aggatgttcatcccctcca

SLC7A7 y+LAT1 Forward cctgcttatatccaggaccaa
Reverse ggccacttcatactcagtgct

SLC7A6 y+LAT2 Forward cctatccctgctttactgttcaa
Reverse aagctgaagtagttgataagctgga

SLC7A5 LAT1 Forward gtggaaaaacaagcccaagt
Reverse gcatgagcttctgacacagg

SLC7A8 LAT2 Forward ttgccaatgtcgcttatgtc
Reverse ggagcttctctccaaaagtcac

SLC43A1 LAT3 Forward tttggtggcatctgcctaa
Reverse attaacgtggagcgcaggt

SLC43A2 LAT4 Forward cagggagaccctctgtgg
Reverse cggtagcagatcaggtagagc

SLC3A2 4F2hc Forward taccggggtgagaactcgt
Reverse cagccaaaactccagagcat

ACTB actin, beta Forward ccaaccgcgagaagatga
Reverse ccagaggcgtacagggatag

GAPDH - Forward agccacatcgctcagacac
Reverse gcccaatacgaccaaatcc
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applicable to BNCT with BPA. PET with 11C-MET is useful for diagnosis
of brain tumors [16,17]. Moreover, 11C-MET is also transported into
cells by system L [18,19]. To determine the difference between the
two PET tracers, we investigated the transport mechanism of 18 F-
FBPA and 14C-MET using three human glioblastoma cell lines. Direct
comparison of both tracers gives us valuable information to estimate
the therapeutic benefits of BNCT with BPA.

2. Materials and methods

2.1. Cell culture

Three human glioblastoma cell lines used were A172, T98G, (DS
Pharma Biomedical Co., Ltd., Osaka, Japan) and U-87 MG (American
Type Culture Collection, Manassas, VA, USA). A172 cells were cultured
in Dulbecco’s modified Eagle’s medium (4.5 g/L glucose; Invitrogen,
Carlsbad, CA, USA) supplemented with 10% fetal bovine serum (FBS).
T98G and U-87MG were cultured in Eagle’s minimum essential
medium (Invitrogen) supplemented with 10% FBS. All cell lines were
maintained in a humidified atmosphere of 5% CO2 in air at 37 °C.

2.2. Synthesis of 18 F-FBPA

18 F-FBPAwas synthesized by direct electrophilic radiofluorination
of BPA (Sigma-Aldrich, St. Louis, MO, USA) using 18 F-acetyl hypo-
fluorite as described previously [20]. Purification of 18 F-FBPA was
performed by HPLC using YMC-Pack ODS-A column (20 × 150 mm;
YMC, Kyoto, Japan) elutedwith 0.1% acetic acid at a flow rate of 10 ml/
min. The radiochemical purity was determined by HPLC. The
radiochemical purity and the specific activity of 18 F-FBPA were
N99.5% and 25 MBq/μmol, respectively.

2.3. In vitro uptake of 18 F-FBPA and 14C-MET in human glioblastoma
cell lines

In vitro uptake studies were carried out as described previously
[21]. L-[methyl-14C] methionine (14C-MET) was purchased from
American Radiolabeled Chemicals Co. (St. Louis, MO, USA). Tumor
cells (1 × 105 cells/well) were seeded in 24-well plates. The uptake
studies were performed on the subsequent day after seeding. The
sodium-containing assay buffer was composed of phosphate-buffer
saline (Na+-PBS) supplemented with 137 mM NaCl, 2.7 mM KCl,
8 mM Na2HPO4, 1.5 mM KH2PO4, 5.6 mM D-glucose, 0.9 mM CaCl2,
and 0.5 mM MgCl2. In the sodium-free assay buffer (Na+-free PBS),
NaCl and Na2HPO4 were replaced by choline chloride and K2HPO4,
respectively. Preliminary experiments to determine the time curse of
18 F-FBPA uptake into T98G cells indicated that the uptake was
linearly dependent on incubation time up to 30 min (data not
shown). Thus, the uptake of 18 F-FBPA and 14C-MET was measured
for 30 min. After removing culture medium, the cells were pre-
incubated with 500 μl of the assay buffer for 10 min at 37 °C. The cells
were then incubated with 500 μl of the assay buffer containing 18 F-
FBPA (185 kBq) or 14C-MET (18.5 kBq) for 30 min at 37 °C. After
incubation, the cells werewashed twice with ice-cold assay buffer and
dissolved in 0.1 N NaOH. The radioactivity in the cells was measured
with a gamma counter (AccuFLEX γ7001; Aloka, Tokyo, Japan) and a
liquid scintillation counter (Tri-Carb 3110TR; PerkinElmer, Waltham,
MA, USA).

To characterize the transport system, we performed the
inhibition experiment with inhibitors: 2-aminobicyclo-(2.2.1)-hep-
tane-2-carboxylic acid (BCH; Sigma-Aldrich) for system L,
2-(methylamino)-isobutyric acid (MeAIB; Sigma-Aldrich) for sys-
tem A, and BPA at concentrations indicated in figures. To calculate
the contribution of amino acid transporter systems, we used the
methods reported by Kobayashi et al. [18]. In brief, uptake of 18 F-
FBPA and 14C-MET in the absence of inhibitors was used as the
control (100%). System A and ASC transport was calculated by
subtracting the tracer uptake in the presence of MeAIB from
uptake in the Na+-PBS control and Na+-free PBS control,
respectively. System L transport was calculated by subtracting
tracer uptake in the presence of BCH from the uptake in the Na+-
free PBS control. Finally, System PAT transport was calculated by
subtracting the tracer uptake in the presence of MeAIB from the
Na+-free PBS control.
2.4. qRT-PCR analysis

Total RNA was extracted from A172, T98G, and U-87MG cells
using an RNeasy Mini kit (QIAGEN, Tokyo, Japan). cDNA was
synthesized from total RNA using an AffinityScript QPCR cDNA
Synthesis kit (Agilent Technologies, Santa Clara, CA, USA). The
thermal profile of the reverse transcription was as follows: 5 min
at 25 °C, 15 min at 42 °C for and 5 min at 95 °C. System A
(SNAT1, SNAT2, SNAT4) and ASC (ASCT1, ASCT2) as Na+-
dependent transporters, system L (LAT1, LAT2, LAT3, LAT4) as
Na+-independent transporter, and 4F2hc which forms heterodi-
mers with LAT1 and LAT2 were analyzed. Glyceraldehyde-3-
phosphate dehydrogenase (GAPDH) and β-actin (ACTB) were
used as internal controls. Primers for each target gene were
synthesized by Nihon Gene Research Laboratories (Table 1; Miyagi,
Japan). Quantitative real time polymerase chain reaction (qRT-
PCR) was performed on an Mx3005P (Agilent Technologies) using
Brilliant III Fast SYBR Green QPCR Master Mix (Agilent Technol-
ogies). The thermal profile of QPCR reaction was as follows: 3 min
at 95 °C for 1 cycle, 5 s at 95 °C followed by 20 s at 60 °C for
40 cycles, 1 min at 95 °C followed by 30 s at 55 °C and 30 s at
95 °C for 1 cycle. The mRNA copy number was calculated from
standard curves generated by amplifying serial dilutions of a
known concentration of purified amplicons. Expression data were
normalized against the average copy number of housekeeping
genes. All samples were analyzed in triplicate.



Fig. 1. Contribution of amino acid transporters to 18 F-FBPA (left) and 14C-MET (right) uptake in human glioblastoma cell lines. 18 F-FBPA or 14C-MET was incubated with cells for
30 min (n = 4).
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2.5. Statistical analysis

The correlations between tracer uptake and gene expression were
analyzed using GraphPad Prism v5.04 (Graph Pad Software Inc., San
Diego, CA, USA).

3. Results

3.1. Competitive inhibition study of 18 F-FBPA and 14C-MET

We estimated the contribution of each amino acid transport
system to 18 F-FBPA and 14C-MET in A172, T98G, and U-87MG cells
(Fig. 1). System L was predominantly involved in tumor uptake of
18 F-FBPA (74.5%–81.1% of total uptake). Contribution of system ASC
and other transport systems in the uptake of 18 F-FBPA was 5.6%–
21.6% and 1.9%–6.9%. Uptake of 14C-MET was also mainly mediated by
system L (48.3%–59.4%). In addition, 28.8% of total 14C-MET uptake in
U-87MG cells was mediated by system ASC. In T98G cells, system A
contributed to 22.7% of total 14C-MET uptake. Contribution of PAT,
system ASC, and system A was 8.1%–12.1% in A172 cells.

3.2. Dose-dependent inhibition of FBPA and MET uptake by BPA

Uptake of 18 F-FBPA was dose-dependently inhibited by BPA in all
cell lines (Fig. 2). BPA (1 mM) reduced the uptake of 18 F-FBPA to
2.1%–7.1% of control. On the other hand, the uptake of 14C-MET was
decreased by 1 mM BPA to 31.2% in A172, 42.2% in T98G and 32.4% in
U-87MG.
Fig. 2. Effect of BPA to 18 F-FBPA (left) and 14C-MET (right) uptake in human glioblastoma cel
the cells for 30 min (n = 4).
3.3. Gene expression of amino acid transporters in A172, T98G
and U-87MG

The gene expression of amino acid transporters was summarized
in Table 2. The Na+-dependent transporter systems, system A, and
system ASC, were predominantly expressed in T98G cells. The
expression of system ASC in U-87MG cells was higher than that in
A172 cells. Among system L, LAT1 was highly expressed in T98G cells,
while LAT4 was expressed in A172 cells.

3.4. Relationship between tracer uptakes and gene expressions

Fig. 3 showed that the uptake of 18 F-FBPA correlated with LAT1
and total LAT expression (r = 0.8576 for LAT1 and 0.9418 for total
LAT). The uptake of 14C-MET correlated with total LAT expression
(r = 0.6691), but not with LAT1 expression. However, these
correlations are statistically not significant.

4. Discussion

We investigated and compared the transport mechanism of 18 F-
FBPA and 14C-MET in human glioblastoma cell lines, A172, T98G, and
U-87MG. The present study revealed that although system L is a main
contributor for the uptake of 18 F-FBPA and 14C-MET, other trans-
porters also mediate the uptake of 14C-MET.

BCH drastically inhibited the uptake of 18 F-FBPA in all glioblas-
toma cell lines, suggesting the major involvement of system L,
containing LAT1, LAT2, LAT3, and LAT4. The uptake of BPA and 125I-2-
iodo-L-phenylalanine was inhibited by BCH and phenylalanine,
l lines. 18 F-FBPA or 14C-METwas incubated with the indicated concentration of BPA and

image of Fig.�2


Table 2
Expression of amino acid transporters in human glioblastoma cell lines.

System Family A172 T98G U-87MG

Na+-dependent A SNAT1 14.14 21.50 24.23
SNAT2 39.31 105.84 41.79
SNAT4 0.18 ND ND

ASC ASCT1 4.60 10.70 12.09
ASCT2 10.10 88.86 41.84

y+L yLAT1 ND 0.88 ND
yLAT2 8.75 10.89 11.94

Na+-independent L LAT1 15.67 59.01 16.19
LAT2 1.67 0.64 2.44
LAT3 1.66 1.66 0.49
LAT4 42.59 9.19 3.17

Coupling factor 4F2hc 4F2hc 37.21 191.79 101.10

Data are expressed as copy number per 1000 copies of housekeeping genes.
ND: not determined.
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supporting our results [15,22,23]. However, these studies have
focused only on LAT1 because its expression is elevated in a variety
of tumors, and LAT4 has not yet been well-characterized in tumor
[14]. The qRT-PCR analysis revealed that 18 F-FBPA uptake demon-
strated an enhanced correlationwith total LAT, mainly LAT1 and LAT4,
than LAT1 alone. Haase et al. reported higher expression of LAT4 than
LAT1 in HT-29 colon cancer cells and FaDu head and neck cancer cells
[24]. Phenylalanine is a substrate for LAT4 as well as LAT1 [10]. These
data imply that LAT4 expression could be an important factor for 18 F-
FBPA uptake in tumors.

Similarly, system L was predominantly involved in the uptake of
14C-MET. Unlike 18 F-FBPA; however, other components, such as
Fig. 3. Correlation between tumor uptake of 18 F-FBPA (A) and 14C-MET (B) and the
expression of amino acid transport system genes. 18 F-FBPA positively correlated with
LAT1 and total LAT (r = 0.8576, p = 0.3440 for LAT1 and r = 0.9418, p = 0.2183 for
total LAT). Although there was no correlation between 14C-MET uptake and LAT1
(r = −0.1497, p = 0.9043), total LAT had a weak correlation with 14C-MET (r =
0.6691, p = 0.5334).
system ASC and system A, also contributed to the uptake of 14C-MET.
This resulted in a weak correlation between 14C-MET uptake and total
LAT expression, even though one of the reasons may be because of the
small number of cell lines used in this study. Soriano-Garcia et al.
indicated the involvement of four systems containing system L inMET
transport [25]. Shotwell et al. reported that the uptake of MET in
Chinese hamster ovary (CHO) cells was mediated by system L (51%),
system ASC (22%), and system A (9%) [26]. Thus, uptake of 14C-MET is
regulated by a diverse expression of amino acid transporters.

Other reason for this weak correlation might be because the
incorporation of 14C-MET into protein contributes to the uptake of
14C-MET. 14C-MET is metabolized and then incorporated to protein.
The reflux and the metabolism of 14C-MET through the incubation for
30 min would not be negligible. Therefore, the uptake of 14C-MET
might not solely reflect the transport activity of 14C-MET.

Our inhibition study and other previous studies have indicated
that 14C-MET was partly transported by BPA-non-sensitive trans-
porters. Therefore, 11C-MET-PET may overestimate the concentration
of BPA in tumor tissues because of its compatibility with a broad range
of amino acid transporters. In this study, SNAT2, ASCT2, and system L
were expressed at various levels in glioblastoma cell lines. The
expression of these transporters was remarkably elevated in human
cancers [14,21]. Moreover, MET is a better substrate for ASCT2 and
SNAT2 than phenylalanine [27,28]. These data suggest that 11C-MET
would be preferentially taken up in tumors with high expression of
ASCT2 and/or SNAT2.

System L-specific imaging agents may be possible candidates to
select patients with the therapeutic benefits of BNCT with BPA. Our
results indicated that 18 F-FBPA is a system L-specific imaging agent.
Uptake of phenylalanine derivatives such as 3-O-methyl-6-18 F-
fluoro-L-dopa and 123/125I-2-iodo-L-phenylalanine was mediated by
system L [22–24]. Wiriyasermkul et al. reported that L-3-18 F-α-
methyl tyrosine is selectively transported by LAT1 but not by LAT2,
whereas the contribution of LAT4 is unclear [29].

Based on our results, 18 F-FBPA is a selective substrate for system L
containing LAT1 and LAT4 in three human glioblastoma cell lines.
Other amino acid transporters such as systemASC and system A partly
contributed to the 14C-MET uptake compared with 18 F-FBPA. Further
studies are needed to investigate the correlation between the tracer
uptake and BPA contents in tumor tissues for selecting patients who
may benefit from BNCT with BPA.
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